Problem 1
Let f(z) = Ae ™2 for 0 < z < 2 (f(x) = 0 for any other value of z) be a p.d.f.
For what value of A is f(z) a true density function?
Using the value of A calculated above, what is the probability P(—2 < z < 2)?

Solution 1

For f to de a p.d.f. we must have 2 conditions:
f(z) >0 for all x and [~ f(z)dz = 1.

g1 — ey = %A(l —e

[e’s) 2 _
/ f(z)dz = / Ae 2%dr = A(Tle_m]g =3
—00 0

So since 1 = [*_ f(z)dz = $A(1 —e™*) we get that A = (1——i*4)

We don’t really need the value of A calculated above to notice that f(x) > 0
only for 0 <z <2s0o P(0 <z <2)=1 and hence P(—2 < z < 2) =1 too.



Problem 2
Suppose that X is uniformly distributed on the interval (—2,3). Let Y = X2,
Find the density function of Y.
Find the distribution function of Y.

Solution 2

Since X is uniformly distributed, its p.d.f. should look like fx (z) = { A ze(-2,3)

0 otherwise
Since 1 = [7_ fx(z)dz = fEQ Adr = Az]®, = A(3 — (=2)) = 5A, we get that
A=1. S0 the p.d.f. for X is fx(z) = { 5 T€(-23)

5 0 otherwise
The c.d.f. of X is simply an integration over the p.d.f.: Fx(z) = [ fx(u)du.
We must notice that this function has 3 distinct areas: * < —2, x > 3 and
—2 <z < 3. For x < =2, Fx(x) = 0 clearly. For z > 3, Fx(z) = 1. The
interesting part is for —2 < z < 3 where we get:

Fy(z) = / Fx(w)du = / fdu= 2l = 2@~ (-2)) = 2z +2)

0 T < =2
So our c.d.f. is Fx(z) = 2(z+2) -2<z<3
1 z>3

Now Y = X2, so if x € (—2,3) then y € (0,9). We will split the problem into 2
areas: 0 <y <4 (i.e. where —2 <z <2)and4<y <9 (ie. for2<z<3).
Lets calculate the c.d.f. for y € (0,4).

Fy(y)=P(Y <y)=P(X*<y)=P(—/y< X < V)
=P(X <y) - P(X < —y) = Fx(/y) — Fx(=y).

Since y € (0,4) we get that = /y € (0,2) and 2 = —,/y € (-2,0) so
x € (—2,2) and we can plug it into the c.d.f. from above to get

Fx (V) — Fx (=) = é(\/z?+ 2) — %(_\/g+ 2) = %17

For y € (4,9) the situation is simpler, since we definitly know that z € (2, 3).

Fe(y) = P(Y <) = P(X* < y) = P(X < VJ) = P(X < i) = Fx(yB) = £ (i+2)

0 y <0
2 os<y<d
(Vy+2) 4<y<9
1 y>9
0<y<4
o 4<y<9
0 otherwise

We combine our results and get Y’s c.d.f. tobe: Fy(y) =

atl=

|)—‘

5

>

For the p.d.f we can derive the c.d.f. and get fy(y) =

S



Problem 3
Suppose that X and Y are independent random variables, each uniformly dis-
tributed on the interval (0,1). Let V=X —Y and let W =X +Y.
Find the distribution function of V.
Find the distribution function of W.

Solution 3
We have already seen that the p.d.f. and c.d.f. of a uniformly distributed

random variables such as X and Y should be:
0 <0

f(z) = { (1) ;heeﬁg;;l and F(z)=¢ z z€(0,1)

0 z>1
For any value v of V = X — Y there are many options of what values X and Y
can get. We can be more percise and determine that for any value v, if X =z
then Y must equal (zx —v) sothat V=X -Y =2 — (z —v) =v.
To get the p.d.f. of V at point v we will then integrate over all possible values
of x. The p.d.f. can be written as fy (v) = [*_ fx(z)fy(z — v)dx
Lets look at the p.d.f. of V when v is p051t1ve (0 § v < 1). Notice that while
both x and y are in (0,1), v can get values between -1 and 1.
Our multiplicants are non zero when 0 < z < 1 and 0 < z — v < 1 which in
this case (0 < v < 1)means v < x < 1+ v. So the integration limits will be
v<zx<1:

fv(v) = le(x)fy(x—v)dxz/ll*ld:E:/lldxzx]quzl—v

When —1 < v < 0, our integration limits change into 0 < 2 < 1+ v and we get:

14w 14w 14+v
fv(v):/o fX(ac)fy(ac—v)d:E:/O 1*1dx=/0 ldr =zt =v+1

v+1 -1<v<0
We combine our results and get the p.d.f. fy(v)=¢ 1—-v 0<v<1
0 otherwise
To get the c.d.f. we must integrate the p.d.f. to get:
For v € (—1,0),

v) = /U1 fv(u)du = /vl(u—i-l)du = u;—i—u]“il = f—HJ—(l—l) = 1)—2—|—v—|—l
For v € (0,1),
v 1 u
/ fv(u du—/_ (u+1)du—|—/0 (1—u)du=§+(u—7)]8=§+v—?
0 v<—1
% + v+ % -1<v<0

%—I—v—% 0<v<l1
1 1<w

And finally Fy (v) =



W =X +Y is very similar to calculate.

For any value w of W = X + Y there are many options of what values X and
Y can get. For any value w, if X = z then Y must equal (w — x) so that

W=X+Y =2+ (w—2z)=w.

To get the p.d.f. of W at point w we will then integrate over all possible values

of x. The p.d.f. can be written as fw (w) = [~ fx (z)fy (w — z)dx

Notice that this time since both z and y are in (0,1), w can get values between

0 and 2.

Our multiplicants are non zero when 0 < x < 1 and 0 < w —x < 1 which in our

case means w — 1 < z < w.

Again it will be comfortable splitting the function into 2 areas namely w € (0, 1)

and w € (1,2) so that our integration includes non-zero values only.
For w € (0,1) the integration limits will be 0 < z < w:

fW(w)—/wax(x)fy(w—:z:)dx—/Owl*ldzz:—/owldzz:—:z:]})”—w

For w € (1,2) the integration limits will be w — 1 < z < 1 and we get:

1 1
fw (w) :/_1 fx(@)fy(w—2x)dzx = /_1 lde=z]l ,=2—w

w 0<w<l1

We combine our results and get the p.d.f. fy(w)=¢ 2—w 1<w<2

0 otherwise

To get the c.d.f. we must integrate the p.d.f. to get:
For w € (0,1),

w w U,2 U}2 2
Fy (w) :/0 fw (w)du :/0 udu = 7]6” =3~ 0= -

For w € (1,2),

1 u? 1 w? 1 w?
c+2u--)Y=z+Qu—-——)-2-37)=2w—-— -1
w <0
2
= 0<w<1
Finally we get Fy (w) = 2 Sws
1 2<w

Note : There are many other ways of finding these functions.



Problem 4
Suppose that X and Y are independent random variables and each is of expo-
nential distribution with mean %, i.e. f(z) = 3¢ and f(y) = 3e™3. Let
V=X+Y,let W=min(X,Y and let Z = maz(X,Y).
Find the distribution function of V.
Find the distribution function of W.

Find the distribution function of Z.

Solution 4
For V = X +Y we will follow the same principle as before:
For any value v of V. = X + Y there are many options of what values X and
Y can get. For any value v, if X = z then Y must equal (v — z) so that
W=X+Y=z+4+(v-—2z)=w.
To get the p.d.f. of V at point v we will then integrate over all possible values
of x. The p.d.f. can be written as fy (v) = [~ fx(z)fy (v — )dz
Notice that this time since both = and y are in (0,00), v = x 4+ y also has the
same range.
Our multiplicants are non zero when 0 < z < oo and 0 < v — x < oo which in
our case means —oo0 < z < v. Combining these 2 conditions we get that the
integration limits should be 0 < z < v:

fv(v) = /0” fx (@) fy (v —2x)de = /v 3737 % 373y = /U 9e 3 dx =

0 0
96_3”/ dx = 9e 3 z]y = 9¢ %" (v — 0) = e~
0

To get the c.d.f. we must integrate the p.d.f. to get:

Fy(v) = / fv(u)du = / Que 3du =
0 0
To evaluate fov 9ue3*du we will use integration by parts ([ zdy = zy — [ ydz).

Set = 9u and dy = e 3“du. So dz = 9du and y = [ e *“du = _716_3“
Now integrate

v _1 v _1 v
/ Que 3 du = (Ju* —e3")]y —/ —e 3% 9du = —3ue” 3]} —/ 3e 3 dv
0 3 o 3 0

= (=3ve ™ —0) — (—e "))y = —3ve " — (= — (=1)) =1— (Bv+ 1)

0 v<0
So FV(U)_{ 1—Buv+1e™™ v>0



Lets start with Z = maz(X,Y). What does the fact that Z is maz(X,Y)
mean?

It means that if Z < z for some z, then both X and Y are smaller than z.

In probability notation we can say that P(Z < z2)=P(X <zand Y < z2).
Since X and Y are independant we can write this as P(Z < z) = P(X <
z) P(Y < 2).

By definition P(X < z) = Fx(z) and P(Y < z) = Fy(2).

So all we need to do is find the c.d.f. of the exponential function.

F(z) = / e = e = (e —1)=1—e ¥
0
So the c.d.f. is (for z > 0):

Fz(2) =P(Z<2)=P(X <2)*P(Y <2)=Fx(2) Fy(2) = (1 —e %) =
1 —2e7 3% 4762

With W = min(X,Y) we go through a similar process.

Here, when W < w, it means that the minimum of X and Y is less than w. We
can rephrase it as when the minimum is greater than w (W > w), then both
X and Y must be also greater than w. To put this in probablistic notation:
PW>w)=PX >wandY >w)=P(X >w) P(Y > w) since X and Y are
independant.

We know that P(W < w) = Fy (w), but whar about P(W > w)?

P(W > w) is the complement of P(W < w), so P(W > w) =1—-P(W <w)
Now we are ready to calculate our c.d.f.

Fy(w)=PW <w)=1—-Plw>w)=1-P(X >w) PY >w)

P(X >w)=1—-P(X <w) =1- Fx(w) for the same reasons as before and
we finally get:

Fw(w)=1-P(X>w) P(Y >w)=1—(1— P(X <w)(l - P(Y < w)) =
1—(1-Fx(w)(1-Fy(w))=1-(1-Fx(w) - Fy(w) + Fx(w)Fy(w)) =
1 (1= (1= e ) — (1— e W) 1 (1— e 30)2) =
I—(1—1+4e —14+e 41 -2 fe ) =1—e 0

Here too, the domain is (0, 00).

Note : There are many other ways of finding these functions.



