
Problem 1

Let f(x) = Ae−2x for 0 < x < 2 (f(x) = 0 for any other value of x) be a p.d.f.
For what value of A is f(x) a true density function?
Using the value of A calculated above, what is the probability P (−2 ≤ x ≤ 2)?

Solution 1

For f to de a p.d.f. we must have 2 conditions:
f(x) ≥ 0 for all x and

∫∞
−∞ f(x)dx = 1.

∫ ∞

−∞
f(x)dx =

∫ 2

0

Ae−2xdx = A(
−1
2

e−2x]20 =
−1
2

A(e−4 − e0) =
1

2
A(1− e−4)

So since 1 =
∫∞
−∞ f(x)dx = 1

2A(1− e−4) we get that A = 2
(1−e−4) .

We don’t really need the value of A calculated above to notice that f(x) > 0
only for 0 < x < 2 so P (0 ≤ x ≤ 2) = 1 and hence P (−2 ≤ x ≤ 2) = 1 too.
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Problem 2

Suppose that X is uniformly distributed on the interval (−2, 3). Let Y = X2.
Find the density function of Y .
Find the distribution function of Y .

Solution 2

SinceX is uniformly distributed, its p.d.f. should look like fX(x) =

{
A x ∈ (−2, 3)
0 otherwise

Since 1 =
∫∞
−∞ fX(x)dx =

∫ 3
−2Adx = Ax]3−2 = A(3 − (−2)) = 5A, we get that

A = 1
5 . So the p.d.f. for X is fX(x) =

{
1
5 x ∈ (−2, 3)
0 otherwise

The c.d.f. of X is simply an integration over the p.d.f.: FX(x) =
∫ x
−∞ fX(u)du.

We must notice that this function has 3 distinct areas: x < −2, x > 3 and
−2 ≤ x ≤ 3. For x < −2, FX(x) = 0 clearly. For x > 3, FX(x) = 1. The
interesting part is for −2 ≤ x ≤ 3 where we get:

FX(x) =

∫ x

−∞
fX(u)du =

∫ x

−2

1

5
du =

1

5
u]x−2 =

1

5
(x− (−2)) =

1

5
(x+ 2)

So our c.d.f. is FX(x) =






0 x < −2
1
5 (x+ 2) −2 ≤ x ≤ 3
1 x > 3

Now Y = X2, so if x ∈ (−2, 3) then y ∈ (0, 9). We will split the problem into 2
areas: 0 ≤ y ≤ 4 (i.e. where −2 ≤ x ≤ 2) and 4 < y ≤ 9 (i.e. for 2 < x ≤ 3).
Lets calculate the c.d.f. for y ∈ (0, 4).

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (−
√
y ≤ X ≤

√
y)

= P (X ≤
√
y)− P (X ≤ −

√
y) = FX(

√
y)− FX(−

√
y).

Since y ∈ (0, 4) we get that x =
√
y ∈ (0, 2) and x = −√y ∈ (−2, 0) so

x ∈ (−2, 2) and we can plug it into the c.d.f. from above to get

FX(
√
y)− FX(−

√
y) =

1

5
(
√
y + 2)−

1

5
(−
√
y + 2) =

2
√
y

5

For y ∈ (4, 9) the situation is simpler, since we definitly know that x ∈ (2, 3).

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (X ≤
√
y) = P (X ≤

√
y) = FX(

√
y) =

1

5
(
√
y+2)

We combine our results and get Y ’s c.d.f. to be: FY (y) =






0 y < 0
2
√
y

5 0 ≤ y ≤ 4
1
5 (
√
y + 2) 4 < y ≤ 9
1 y > 9

For the p.d.f we can derive the c.d.f. and get fY (y) =






1
5
√
y

0 ≤ y ≤ 4
1

10
√
y
4 < y ≤ 9

0 otherwise
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Problem 3

Suppose that X and Y are independent random variables, each uniformly dis-
tributed on the interval (0, 1). Let V = X − Y and let W = X + Y .
Find the distribution function of V .
Find the distribution function of W .

Solution 3

We have already seen that the p.d.f. and c.d.f. of a uniformly distributed
random variables such as X and Y should be:

f(x) =

{
1 x ∈ (0, 1)
0 otherwise

and F (x) =






0 x < 0
x x ∈ (0, 1)
0 x > 1

For any value v of V = X − Y there are many options of what values X and Y

can get. We can be more percise and determine that for any value v, if X = x

then Y must equal (x− v) so that V = X − Y = x− (x− v) = v.
To get the p.d.f. of V at point v we will then integrate over all possible values
of x. The p.d.f. can be written as fV (v) =

∫∞
−∞ fX(x)fY (x− v)dx

Lets look at the p.d.f. of V when v is positive (0 ≤ v ≤ 1). Notice that while
both x and y are in (0, 1), v can get values between -1 and 1.
Our multiplicants are non zero when 0 ≤ x ≤ 1 and 0 ≤ x − v ≤ 1 which in
this case (0 ≤ v ≤ 1)means v ≤ x ≤ 1 + v. So the integration limits will be
v ≤ x ≤ 1:

fV (v) =

∫ 1

v

fX(x)fY (x− v)dx =

∫ 1

v

1 ∗ 1dx =
∫ 1

v

1dx = x]1v = 1− v

When −1 ≤ v ≤ 0, our integration limits change into 0 ≤ x ≤ 1+ v and we get:

fV (v) =

∫ 1+v

0

fX (x)fY (x− v)dx =

∫ 1+v

0

1 ∗ 1dx =
∫ 1+v

0

1dx = x]1+v0 = v + 1

We combine our results and get the p.d.f. fV (v) =






v + 1 −1 ≤ v ≤ 0
1− v 0 ≤ v ≤ 1
0 otherwise

To get the c.d.f. we must integrate the p.d.f. to get:
For v ∈ (−1, 0),

FV (v) =

∫ v

−1
fV (u)du =

∫ v

−1
(u+1)du =

u2

2
+u]v−1 =

v2

2
+v−(

1

2
−1) =

v2

2
+v+

1

2

For v ∈ (0, 1),

FV (v) =

∫ v

−1
fV (u)du =

∫ 0

−1
(u+1)du+

∫ v

0

(1−u)du =
1

2
+(u−

u2

2
)]v0 =

1

2
+v−

v2

2

And finally FV (v) =






0 v < −1
v2

2 + v + 1
2 −1 ≤ v ≤ 0

1
2
+ v − v

2

2
0 ≤ v ≤ 1

1 1 < v
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W = X + Y is very similar to calculate.
For any value w of W = X + Y there are many options of what values X and
Y can get. For any value w, if X = x then Y must equal (w − x) so that
W = X + Y = x+ (w − x) = w.
To get the p.d.f. of W at point w we will then integrate over all possible values
of x. The p.d.f. can be written as fW (w) =

∫∞
−∞ fX (x)fY (w − x)dx

Notice that this time since both x and y are in (0, 1), w can get values between
0 and 2.
Our multiplicants are non zero when 0 ≤ x ≤ 1 and 0 ≤ w−x ≤ 1 which in our
case means w − 1 ≤ x ≤ w.
Again it will be comfortable splitting the function into 2 areas namely w ∈ (0, 1)
and w ∈ (1, 2) so that our integration includes non-zero values only.
For w ∈ (0, 1) the integration limits will be 0 ≤ x ≤ w:

fW (w) =

∫ w

0

fX (x)fY (w − x)dx =

∫ w

0

1 ∗ 1dx =
∫ w

0

1dx = x]w0 = w

For w ∈ (1, 2) the integration limits will be w − 1 ≤ x ≤ 1 and we get:

fW (w) =

∫ 1

w−1
fX(x)fY (w − x)dx =

∫ 1

w−1
1dx = x]1w−1 = 2− w

We combine our results and get the p.d.f. fW (w) =






w 0 ≤ w ≤ 1
2− w 1 ≤ w ≤ 2
0 otherwise

To get the c.d.f. we must integrate the p.d.f. to get:
For w ∈ (0, 1),

FW (w) =

∫ w

0

fW (u)du =

∫ w

0

udu =
u2

2
]w0 =

w2

2
− 0 =

w2

2

For w ∈ (1, 2),

FW (w) =

∫ 1

0

fW (u)du+

∫ w

1

fW (u)du =
1

2
+

∫ w

1

(2− u)du =

1

2
+ (2u−

u2

2
)]w1 =

1

2
+ (2w −

w2

2
)− (2−

1

2
) = 2w −

w2

2
− 1

Finally we get FW (w) =






0 w < 0
w2

2 0 ≤ w ≤ 1
2w − w2

2 − 1 1 ≤ w ≤ 2
1 2 < w

Note : There are many other ways of finding these functions.
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Problem 4

Suppose that X and Y are independent random variables and each is of expo-
nential distribution with mean 1

3 , i.e. f(x) = 3e−3x and f(y) = 3e−3y. Let
V = X + Y , let W = min(X,Y and let Z = max(X,Y ).
Find the distribution function of V .
Find the distribution function of W .
Find the distribution function of Z.

Solution 4

For V = X + Y we will follow the same principle as before:
For any value v of V = X + Y there are many options of what values X and
Y can get. For any value v, if X = x then Y must equal (v − x) so that
W = X + Y = x+ (v − x) = w.
To get the p.d.f. of V at point v we will then integrate over all possible values
of x. The p.d.f. can be written as fV (v) =

∫∞
−∞ fX(x)fY (v − x)dx

Notice that this time since both x and y are in (0,∞), v = x + y also has the
same range.
Our multiplicants are non zero when 0 ≤ x ≤ ∞ and 0 ≤ v − x ≤ ∞ which in
our case means −∞ ≤ x ≤ v. Combining these 2 conditions we get that the
integration limits should be 0 ≤ x ≤ v:

fV (v) =

∫ v

0

fX(x)fY (v − x)dx =

∫ v

0

3e−3x ∗ 3e−3(v−x)dx =
∫ v

0

9e−3vdx =

9e−3v
∫ v

0

dx = 9e−3vx]v0 = 9e
−3v(v − 0) = 9ve−3v

To get the c.d.f. we must integrate the p.d.f. to get:

FV (v) =

∫ v

0

fV (u)du =

∫ v

0

9ue−3udu =

To evaluate
∫ v
0 9ue

−3udu we will use integration by parts (
∫
xdy = xy−

∫
ydx).

Set x = 9u and dy = e−3udu. So dx = 9du and y =
∫
e−3udu = −1

3 e−3u

Now integrate

∫ v

0

9ue−3udu = (9u∗
−1
3

e−3u)]v0−
∫ v

0

−1
3

e−3u ∗9du = −3ue−3u]v0−
∫ v

0

3e−3vdv

= (−3ve−3v − 0)− (−e−3u)]v0 = −3ve
−3v − (−e−3v − (−1)) = 1− (3v + 1)e−3v

So FV (v) =

{
0 v < 0

1− (3v + 1)e−3v v > 0
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Lets start with Z = max(X,Y ). What does the fact that Z is max(X,Y )
mean?
It means that if Z ≤ z for some z, then both X and Y are smaller than z.
In probability notation we can say that P (Z ≤ z) = P (X ≤ z and Y ≤ z).
Since X and Y are independant we can write this as P (Z ≤ z) = P (X ≤
z) P (Y ≤ z).
By definition P (X ≤ z) = FX(z) and P (Y ≤ z) = FY (z).
So all we need to do is find the c.d.f. of the exponential function.

F (x) =

∫ x

0

3e−3u = −e−3u]x0 = (−e−3v − 1) = 1− e−3v

So the c.d.f. is (for z ≥ 0):

FZ(z) = P (Z ≤ z) = P (X ≤ z) ∗ P (Y ≤ z) = FX(z) FY (z) = (1− e−3z)2 =

1− 2e−3z + e−6z

With W = min(X,Y ) we go through a similar process.
Here, when W ≤ w, it means that the minimum of X and Y is less than w. We
can rephrase it as when the minimum is greater than w (W > w), then both
X and Y must be also greater than w. To put this in probablistic notation:
P (W > w) = P (X > w and Y > w) = P (X > w) P (Y > w) since X and Y are
independant.
We know that P (W ≤ w) = FW (w), but whar about P (W > w)?
P (W > w) is the complement of P (W ≤ w), so P (W > w) = 1− P (W ≤ w)
Now we are ready to calculate our c.d.f.

FW (w) = P (W ≤ w) = 1− P (w > w) = 1− P (X > w) P (Y > w)

P (X > w) = 1 − P (X ≤ w) = 1 − FX(w) for the same reasons as before and
we finally get:

FW (w) = 1− P (X > w) P (Y > w) = 1− (1− P (X ≤ w))(1− P (Y ≤ w)) =

1− (1− FX(w))(1− FY (w)) = 1− (1− FX (w)− FY (w) + FX(w)FY (w)) =

1− (1− (1− e−3w)− (1− e−3w) + (1− e−3w)2) =

1− (1− 1 + e−3w − 1 + e−3w + 1− 2e−3w + e−6w) = 1− e−6w

Here too, the domain is (0,∞).

Note : There are many other ways of finding these functions.
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